Tail Index Estimation for Parametric Families Using Log Moments

نویسنده

  • Tucker McElroy
چکیده

For heavy-tailed econometric data it is of interest to estimate the tail index, a parameter that measures the thickness of the tails of the marginal distribution. Common models for such distributions include Pareto and t distributions, and in other applications (such as hydrology) stable distributions are popular as well. This paper constructs square root n consistent estimators of the tail index that are independent of the scale of the data, which are based on an assumed knowledge of the parametric family for the marginal distribution. Given the popularity of parametric modeling for economic time series, this method gives an appealing alternative to nonparametric tail index estimators – such as the Hill and Pickands estimators – that are appropriate when the modeler believes that the data belongs to a certain known parametric family of distributions. The method works fairly well for stationary time series with intermediate memory and infinite variance, and since it is parametric does not depend upon blocking or tuning parameters. Small sample results and full asymptotics are provided in this paper, and simulation studies on various heavy-tailed time series models are given as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds on Exponential Moments of the Quadratic Error in Parameter Estimation

Considering the problem of risk–sensitive parameter estimation, we propose a fairly wide family of lower bounds on the exponential moments of the quadratic error, both in the Bayesian and the non–Bayesian regime. This family of bounds, which is based on a change of measures, offers considerable freedom in the choice of the reference measure, and our efforts are devoted to explore this freedom t...

متن کامل

Smooth tail index estimation

Both parametric distribution functions appearing in extreme value theory the generalized extreme value distribution and the generalized Pareto distribution have log-concave densities if the extreme value index γ ∈ [−1, 0]. Replacing the order statistics in tail index estimators by their corresponding quantiles from the distribution function that is based on the estimated log-concave density f̂n ...

متن کامل

Hyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods

‎In this paper‎, ‎a new probability distribution‎, ‎based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated‎. ‎The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function‎. ‎Based on the base log-logistics distribution‎, ‎we introduce a new di...

متن کامل

Estimation of quantile mixtures via L-moments and trimmed L-moments

Moments or cumulants have been traditionally used to characterize a probability distribution or an observed data set. Recently, L-moments and trimmed L-moments have been noticed as appealing alternatives to the conventional moments. This paper promotes the use of L-moments proposing new parametric families of distributions that can be estimated by the method of L-moments. The theoretical L-mome...

متن کامل

A method of moments estimator of tail dependence

In the world of multivariate extremes, estimation of the dependence structure still presents a challenge and an interesting problem. A procedure for the bivariate case is presented that opens the road to a similar way of handling the problem in a truly multivariate setting. We consider a semi-parametric model in which the stable tail dependence function is parametrically modeled. Given a random...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007